
What React 18 does and 
how it impacts your INP

Jacob Groß | @kurtextrem | 7th Feb 2024

https://twitter.com/kurtextrem


Who am I?

• Performance Engineer @ Framer (you might know us from “Framer Motion”)

• prev. Principal Engineer @ Jochen Schweizer mydays

• I participate in W3C WebPerfWG calls (quite fresh)

• I like making things fast & accessible for all users of the internet

• Always open for discussions about all things perf

• github.com/kurtextrem/awesome-performance-patches

https://github.com/kurtextrem/awesome-performance-patches


What’s Interaction-to-Next-Paint (INP)?

Time between User Interaction -> UI update (paint)

• Slower than 200ms -> Bad!

• Faster than 200ms -> Good!

https://www.nngroup.com/articles/response-times-3-important-limits/ https://web.dev/articles/inp

https://www.nngroup.com/articles/response-times-3-important-limits/
https://web.dev/articles/inp


What’s Interaction-to-Next-Paint (INP)?

Time between User Interaction -> UI update (paint)

• Slower than 200ms -> Bad!

• Faster than 200ms -> Good! Good?

In reality, we‘re targeting 100ms:

• 100ms is the threshold where users are not able to perceive the delay
we want this

• 200ms was picked because of the broad landscape of (mobile) devices 
– reaching 100ms is hard

https://www.nngroup.com/articles/response-times-3-important-limits/ https://web.dev/articles/rendering-performance

https://www.speedcurve.com/blog/psychology-site-speed/ https://web.dev/articles/inp

https://www.nngroup.com/articles/response-times-3-important-limits/
https://web.dev/articles/rendering-performance
https://www.speedcurve.com/blog/psychology-site-speed/
https://web.dev/articles/inp


https://speakerdeck.com/paullewis/performance-on-rails

https://speakerdeck.com/paullewis/performance-on-rails


Why should I care?

• Do you like clicking buttons 2, 3, 4 times until something happens?

• Do you like clicking buttons 2, 3, 4 times and the action happens 2, 3, 4 times with a delay each time?

• Do you like clicking buttons 2, 3, 4 times and the action happens 2, 3, 4 times with a delay each time?

• Do you like clicking buttons 2, 3, 4 times and the action happens 2, 3, 4 times with a delay each time?

• The usual response is no.

• Rage Clicks => Bad UX 



Why must I care?

• Amplified on mobile, because devices are sloooooow

• Your 🍎 device != users' device

• Avg.        Android device != avg. developing country device

• Galaxy A51 for 240€ from 2021 is the avg. device
• Sounds recent? 
• Specs match devices from 2017 or earlier!



https://infrequently.org/2024/01/performance-inequality-gap-2024/

https://infrequently.org/2024/01/performance-inequality-gap-2024/


Why should my boss care?



Why should my boss care?

• Failing INP = you fail Core Web Vitals on 12th March 

=> could be bad for SEO!

• INP is not measured on the very powerful iOS devices 
-> bad luck if you have 99% Safari customers; you will need to optimize for Chrome anyway

• Improve UX for ppl. with slow devices => improves UX for all users

• INP has impact on KPIs like Click-Through-Rate (CTR), Conversion Rate (CVR), Bounce Rate

CTR: https://web.dev/case-studies/trendyol-inp CVR: https://www.speedcurve.com/blog/core-web-vitals-inp-mobile/

https://developers.google.com/search/blog/2010/04/using-site-speed-in-web-search-ranking
https://web.dev/case-studies/trendyol-inp
https://www.speedcurve.com/blog/core-web-vitals-inp-mobile/#:~:text=INP%20for%20mobile%20has%20a%20*stronger*%20correlation%20with%20business%20metrics%20than%20INP%20for%20desktop


CTR: https://web.dev/case-studies/trendyol-inp CVR: https://www.speedcurve.com/blog/core-web-vitals-inp-mobile/

Why should my boss care?

• Failing INP = you fail Core Web Vitals on 12th March 

=> could be bad for SEO!

• INP is not measured on the very powerful iOS devices 
-> bad luck if you have 99% Safari customers; you will need to optimize for Chrome anyway

• Improve UX for ppl. with slow devices => improves UX for all users

• INP has impact on KPIs like Click-Through-Rate (CTR), Conversion Rate (CVR), Bounce Rate

https://www.forbes.com/sites/jiawertz/2019/04/17/customers-who-have-excellent-experiences-with-brands-spend-140-more/
https://web.dev/case-studies/trendyol-inp
https://www.speedcurve.com/blog/core-web-vitals-inp-mobile/#:~:text=INP%20for%20mobile%20has%20a%20*stronger*%20correlation%20with%20business%20metrics%20than%20INP%20for%20desktop


https://www.speedcurve.com/blog/core-web-vitals-inp-mobile/

https://www.speedcurve.com/blog/core-web-vitals-inp-mobile/


13% CVR @ 100 ms
vs.

3% CVR @ 250 ms





https://twitter.com/JordyScholing https://twitter.com/DanShappir

https://twitter.com/JordyScholing/status/1749347465034141929
https://twitter.com/DanShappir/status/1525169096408670210




Should my face now look like this       ?

• No.

• That‘s why you‘re here, right? 

• Don’t underestimate the efforts and start “today”
• This includes convincing your boss!

• Grab a drink w/ your SEO team and start making “alliances”

• CEO’s usually listen to their SEO team more than to a dev saying “boss, INP is important”

• Remember: 200ms is your first target, currently there are no plans to lower this 
threshold (however, at some point, Google may)



I’m sold, what do I do?

1) Find your culprits!

a) DIY: Use the Web Vitals chrome extension and click through your page

Enable logging + use the “Performance” tab for 6x CPU slowdown

b) Free INP/CrUX tools

Lab:         DebugBear INP debugging tool

Field:       Calibre, RUMvision, Treo, WebPerformance Report, RequestMetrics

c) Convince your boss to invest in web perf tool(ing)
=> best data, as you get field data (esp. once LoAF lands)

See above, or also SpeedCurve, Akamai mPulse, Catchpoint, SpeedVitals, Sentry, …

https://chromewebstore.google.com/detail/web-vitals/ahfhijdlegdabablpippeagghigmibma
https://www.debugbear.com/inp-debugger
https://calibreapp.com/tools/core-web-vitals-checker/
https://www.rumvision.com/tools/core-web-vitals-history/
https://treo.sh/sitespeed/
https://webperformancereport.com/
https://requestmetrics.com/
https://www.rumvision.com/blog/long-animation-frames/
https://www.speedcurve.com/
https://www.akamai.com/de/products/mpulse-real-user-monitoring
https://de.catchpoint.com/
https://speedvitals.com/


2) Fix it
Make INP green with this one simple trick:



2) Fix it



Hah, bad news. There is no “magic fix”.

* But we get to see some magic fixes later



React 17 vs. React 18



React 17

• Quick recap about how React event handlers worked for ages:
set state after async -> update synchronously

=> user will never see “a”, so it was unnecessary

• We usually use throttling/debouncing + memo to avoid double work



Magic fix #1: Event handlers batched updates

=> 1x re-render with state “b”

=> Less re-rendering work on main thread => better INP

React 18



Enter “concurrent mode” 
• We now have “urgent” and “non-urgent” updates

• via scheduler that gives control back to the browser every 5ms

• Non-urgent is non-blocking => can be interrupted by urgent updates

This is not the default. It is only in play when using transition utilities.

React 18



Magic fix #2: “selective hydration” with <Suspense>

• New API: hydrateRoot()

• All children are marked as “non-urgent”
=> hydrated after all other “urgent” components

• User input (like click) makes <Suspense> trees urgent

• Expensive hydration = slow INP => fixed

React 18



enable non-blocking hydration

Undocumented btw. A real       magic      tip!

NextJS does that already for you (and maybe others).

React 18



https://3perf.com/talks/react-concurrency/

https://3perf.com/talks/react-concurrency/


https://3perf.com/talks/react-concurrency/

https://3perf.com/talks/react-concurrency/


https://3perf.com/talks/react-concurrency/

https://3perf.com/talks/react-concurrency/


Magic fix #1: Batched updates

Magic fix #2: Selective hydration

engineering.zalando.com/posts/2023/07/rendering-engine-tales-road-to-concurrent-react.html vercel.com/blog/improving-interaction-to-next-paint-with-react-18-and-suspense

Result – Zalando: 
-5.69% INP

-2.43% LCP
-0.24% Bounce Rate

Result – Vercel: 
TBT: 80ms (from 480)

INP:  48ms

React 18

https://engineering.zalando.com/posts/2023/07/rendering-engine-tales-road-to-concurrent-react.html
https://vercel.com/blog/improving-interaction-to-next-paint-with-react-18-and-suspense


Transition Utilities – React 18

useDeferredValue(): re-render w/ old value, schedule bg re-render

Better debounce mechanisms – no artificial delay 

useTransition()/startTransition(): mark state updates as “non-blocking”



What is urgent?

• Anything that a user expects immediate feedback from is urgent

• An input is urgent

• If you have a controlled component, updating the value is urgent

• A ‘word counter’ maybe not so much (a tiny bit of delay is fine)

• Click on a button/link/element 

• “Avoid rage      ” as a mental model



Optimistic UI & Pending UI



Immediate feedback
creates better UX.

Be optimistic.



Quick fix: Analytics “Debugging INP” @ https://youtu.be/nQByr5Yyclw?t=1625

https://youtu.be/nQByr5Yyclw?t=1625


https://developer.chrome.com/blog/introducing-scheduler-yield-origin-trial

https://developer.chrome.com/blog/introducing-scheduler-yield-origin-trial#the_problem_with_current_yielding_strategies


Quick fix – Button/Link



Change color, disable it, …

Disable immediately + trigger visual 
update with CSS

e.g. [aria-disabled] { opacity: 0.7; pointer-events: none }

Undo on error



h
tt

p
s:

//
tw

it
te

r.
co

m
/w

es
b

o
s/

st
at

u
s/

1
7

5
2

0
2

8
5

8
4

5
9

0
3

1
9

8
3

0

https://twitter.com/wesbos/status/1752028584590319830


Optimistic UI: GitHub reactions

• Rage x 3000

• Long story short: They have a 1000ms debounce in place (no idea why)

• Does anyone use Instagram here?

Clicking “Like” on any post runs the animation immediately 
=> feels fast on any device & network 

Update count & run network; update UI again if needed



Fixing an expensive search

• Prefer transition utilities over debouncing

• Break up long tasks into smaller ones
• Yield your JS code (like you yield work for coffee      )

• Abort running work & network if there is more recent work

https://codesandbox.io/p/github/mmocny/inp-
codesandbox-nextjs/csb-cswxqy/draft/mystifying-
bell?file=%2Fsrc%2Fapp%2Fpage.tsx%3A37%2C10

https://github.com/mmocny/inp-workshop-nextjs
https://www.youtube.com/watch?v=KZ1kxzsJZ5g
https://codesandbox.io/p/github/mmocny/inp-codesandbox-nextjs/csb-cswxqy/draft/mystifying-bell?file=%2Fsrc%2Fapp%2Fpage.tsx%3A37%2C10
https://codesandbox.io/p/github/mmocny/inp-codesandbox-nextjs/csb-cswxqy/draft/mystifying-bell?file=%2Fsrc%2Fapp%2Fpage.tsx%3A37%2C10
https://codesandbox.io/p/github/mmocny/inp-codesandbox-nextjs/csb-cswxqy/draft/mystifying-bell?file=%2Fsrc%2Fapp%2Fpage.tsx%3A37%2C10


If it doesn’t provide feedback,

it is not urgent to the user.

We run it after yielding.



Recap: How do I fix – Cheatsheet (1/2)

☐ Use the “optimistic UI” & “pending UI” pattern:
• Always run network reqs in parallel, never blocking to UI updates (prefetch where applicable)

• Any interactive element -> change appearance (color, size, …) 

• Analytics always has lowest priority (= run after UI update)

☐ React: useAbortSignallingTransition() & transition utilities

☐Wrap less important components in <Suspense>

☐ or better, eliminate need for hydration (lazy hydration / responsive hydration)

☐ JS: yieldToMainThread()

☐ Animations: Avoid causing reflow or animating expensive CSS props

https://github.com/hadeeb/react-lazy-hydration/
https://github.com/artsy/fresnel


☐ Use Field Data if available, else use DebugBear & similar for Lab Data w/ 6x CPU slowdown

☐ Use the “optimistic fix” pattern:
• Fix now in a maybe not-so-clean way -> make INP green now

• Fix “clean” afterwards

• Favor fixes that improve UX

☐ Handle edge-cases like error scenarios, network failures, long loading states 
(> 1s), … in optimistic UI

☐ Contribute solutions to github.com/kurtextrem/awesome-performance-patches

☐Mega thread: twitter.com/rick_viscomi/status/1754536134690898053

Recap: How do I fix – Cheatsheet (2/2)

https://github.com/kurtextrem/awesome-performance-patches
https://twitter.com/rick_viscomi/status/1754536134690898053


https://www.youtube.com/watch?v=L6gZp3-7w8c

https://www.youtube.com/watch?v=L6gZp3-7w8c


Outlook

• React 18 Canary improves INP with the intro of RSC => avoids hydration of 
static components; e.g., available in NextJS (Vercel's Blog)

• useOptimistic (react.dev) is perfect for the optimistic UI pattern (demo)

• Remix has great docs for optimistic / pending UI + soon has RSC support

• React Forget Compiler (react-forgetti / Million)

• Don‘t only defer your 3rd party, run it in WebWorkers (PartyTown🎉), 
server-side GTM / Cloudflare Zaraz

https://vercel.com/blog/how-react-18-improves-application-performance
https://react.dev/reference/react/useOptimistic
https://twitter.com/ryantotweets/status/1754177804323738016
https://remix.run/docs/en/main/discussion/pending-ui
https://github.com/lxsmnsyc/forgetti
https://million.dev/
https://partytown.builder.io/
https://www.cloudflare.com/de-de/application-services/products/zaraz/


Thank you. Questions?
Contact me on X: @kurtextrem, I (re)tweet perf stuff


	Folie 1: What React 18 does and how it impacts your INP
	Folie 2: Who am I?
	Folie 3: What’s Interaction-to-Next-Paint (INP)?
	Folie 4: What’s Interaction-to-Next-Paint (INP)?
	Folie 5
	Folie 6: Why should I care?
	Folie 7: Why must I care?
	Folie 8
	Folie 9: Why should my boss care?
	Folie 10: Why should my boss care?
	Folie 11
	Folie 12
	Folie 13
	Folie 15
	Folie 16
	Folie 18
	Folie 20: Should my face now look like this       ?
	Folie 21: I’m sold, what do I do?
	Folie 22: 2) Fix it
	Folie 23: 2) Fix it
	Folie 24
	Folie 25:      React 17 vs. React 18
	Folie 26: React 17
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 32
	Folie 34
	Folie 35
	Folie 36: React 18
	Folie 37: Transition Utilities – React 18
	Folie 38: What is urgent?
	Folie 40: Optimistic UI & Pending UI
	Folie 41: Immediate feedback creates better UX. Be optimistic.
	Folie 42: Quick fix: Analytics
	Folie 43
	Folie 45: Quick fix – Button/Link
	Folie 46: Change color, disable it, …
	Folie 47
	Folie 48: Optimistic UI: GitHub reactions
	Folie 49: Fixing an expensive search
	Folie 50: If it doesn’t provide feedback, it is not urgent to the user. We run it after yielding.
	Folie 52: Recap: How do I fix – Cheatsheet (1/2)
	Folie 53
	Folie 54
	Folie 55: Outlook 
	Folie 57: Thank you. Questions?

