What React 18 does and
how it impacts your INP

Jacob Grold | @kurtextrem | 7th Feb 2024

https://twitter.com/kurtextrem

Who am |?

 Performance E ngl neer @ Framer (you might know us from “Framer Motion”)

e prev. Principal Engineer @ Jochen Schweizer mydays

* | participate in W3C WebPerfWG calls wuesen

* | like making things fast & accessible for all users of the internet

* Always open for discussions about all things perf
* github.com/kurtextrem/awesome-performance-patches

https://github.com/kurtextrem/awesome-performance-patches

What’s Interaction-to-Next-Paint (INP)?

Time between User Interaction -> Ul update (paint)
e Slower than 200ms -> Bad!
* Faster than 200ms -> Good!

NEEDS
IMPROVEMENT

200 ms 500 ms

https://www.nngroup.com/articles/response-times-3-important-limits/ https://web.dev/articles/inp

https://www.nngroup.com/articles/response-times-3-important-limits/
https://web.dev/articles/inp

What’s Interaction-to-Next-Paint (INP)?

Time between User Interaction -> Ul update (paint)
e Slower than 200ms -> Bad!
e Faster than 200ms -> Good! Good?

In reality, we‘re targeting 100ms:

* 100ms is the threshold where users are not able to perceive the delay
B B we want this

e 200ms was picked because of the broad landscape of (mobile) devices
—reaching 100ms is hard

https://www.speedcurve.com/blog/psychology-site-speed/ https://web.dev/articles/inp

https://www.nngroup.com/articles/response-times-3-important-limits/ https://web.dev/articles/rendering-performance

https://www.nngroup.com/articles/response-times-3-important-limits/
https://web.dev/articles/rendering-performance
https://www.speedcurve.com/blog/psychology-site-speed/
https://web.dev/articles/inp

RESPONSE U,

SECONDS

ANIMATION 16

MILLISECONDS

IDLE oU

MILLISECONDS

LOAD W

SECOND

@ aerotwist http://www.nngroup.com/articles/response-times-3-important-limits/

https://speakerdeck.com/paullewis/performance-on-rails

https://speakerdeck.com/paullewis/performance-on-rails

Why should | care?

* Do you like clicking buttons 2, 3, 4 times until something happens?

Do you like clicking buttons 2, 3, 4 times and the action happens 2, 3, 4 times with a delay each time?
Do you like clicking buttons 2, 3, 4 times and the action happens 2, 3, 4 times with a delay each time?

Do you like clicking buttons 2, 3, 4 times and the action happens 2, 3, 4 times with a delay each time?

* The usual response is no.
* Rage Clicks => Bad UX &

Why must | care?

« Amplified on mobile, because devices are sloooooow 2
* Your device != users' device
* Avg. e Android device = avg. developing country device

* Galaxy A51 for 240€ from 2021 is the avg. device
* Sounds recent?
* Specs match devices from 2017 or earlier!

Geekbench 5 Single-Core Scores
IOS Single-Core @ Android Single-Core Budget Android Single-Core @ Low-End Single-Core

Galaxy S22 Ultra
Galaxy S21 Ultra

Galaxy S20 Ultra

Galaxy S10+

Galaxy S9+ Moto.E30 Moto E13
MoOto E

Galaxy S7 Jbnar ¥+

Nokia 2.1 Moto E6
1 Slm /| e— i | N0k|a 2

GalaXy S4 Galaxy S5

2013 2014

https://infrequently.org/2024/01/performance-inequality-gap-2024/

Why should my boss care?

‘-‘
4
1

B on making
money
instead

Degrade ‘ Degrade
in SEO : in SEO

Why should my boss care?

* Failing INP = you fail Core Web Vitals on 12t March
=> could be bad for SEO!

* INP is not measured on the very powerful iOS devices
-> bad luck if you have 99% Safari customers; you will need to optimize for Chrome anyway

* Improve UX for ppl. with slow devices => improves UX for all users

* INP has impact on KPIs like Click-Through-Rate (CTR), Conversion Rate (CVR), Bounce Rate

Speeding up websites is important—not just to site owners, but to all Internet users. Faster sites create happy users and Goo Ie
we've seen in our internal studies that when a site responds slowly, visitors spend less time there. But faster sites don't g

just improve user experience; recent data shows that improving site speed also reduces operating costs. Like us, our

users place a lot of value in speed—that's why we've decided to take site speed into account in our search rankings. We
use a variety of sources to determine the speed of a site relative to other sites.

CTR: https://web.dev/case-studies/trendyol-inp CVR: https://www.speedcurve.com/blog/core-web-vitals-inp-mobile/

https://developers.google.com/search/blog/2010/04/using-site-speed-in-web-search-ranking
https://web.dev/case-studies/trendyol-inp
https://www.speedcurve.com/blog/core-web-vitals-inp-mobile/#:~:text=INP%20for%20mobile%20has%20a%20*stronger*%20correlation%20with%20business%20metrics%20than%20INP%20for%20desktop

Why should my boss care?

* Failing INP = you fail Core Web Vitals on 12t March
=> could be bad for SEO!

* INP is not measured on the very powerful iOS devices
-> bad luck if you have 99% Safari customers; you will need to optimize for Chrome anyway

* Improve UX for ppl. with slow devices => improves UX for all users

* INP has impact on KPIs like Click-Through-Rate (CTR), Conversion Rate (CVR), Bounce Rate

Customers Who Have Excellent

Experiences With Brands Spend

CTR: https://web.dev/case-studies/trendyol-inp CVR: https://www.speedcurve.com/blog/core-web-vitals-inp-mobile/

https://www.forbes.com/sites/jiawertz/2019/04/17/customers-who-have-excellent-experiences-with-brands-spend-140-more/
https://web.dev/case-studies/trendyol-inp
https://www.speedcurve.com/blog/core-web-vitals-inp-mobile/#:~:text=INP%20for%20mobile%20has%20a%20*stronger*%20correlation%20with%20business%20metrics%20than%20INP%20for%20desktop

MOBILE INP VS. CONVERSION S O

Interaction to Next Paint (RUM), Mobile

248ms

20000 sessions 15%

75th percentile Interaction to Next Paint (RUM), Android: 248ms

16000 sessions 12%

12000 sessions 9%

6%

I I IIIIIIIIIII I)
— I N = =
I I I lII [T P — 0%

50ms 100ms 150ms 200ms 250ms 300ms 350ms 400ms 450ms

8000 sessions

4000 sessions

O sessions

@ Interaction to Next Paint (RUM), Mobile == Conversion (RUM), Mobile

https://www.speedcurve.com/blog/core-web-vitals-inp-mobile/

https://www.speedcurve.com/blog/core-web-vitals-inp-mobile/

13% CVR @ 100 ms

VS.
CVR @ 250 ms

This is not trivial.

Dan Shappir * host on @JSJabber podcast

@DanShappir - Follow

Jordy X How much of this improvement are NextJS devs? How
. much is NextJs itself? How much is the underlying
@JordySCh0| Ing - Follow platform? Looks to be mostly (only?) the latter

) Core Web Vitals

How will #Nextjs (devs) fix INP and CWV issues in 2024? s

ot e 1)+ Technology. ALL e

Technology drilldown Technology comparison Settings

e
htt Core Web Vitals 1
arcnive | Technology Report Technology ~

Selecteer periode ¥ Client: mobile . Technology: Next js . o - — -
' P P P 0 D D D g G T D PGP PSP P D
B 0 I St 0 0 8

10:12 AM - Jan 22, 2024 6]

Rank: ALL
W1 @ Reply T Share

Read 1 reply

8
s
H
[
g
8
e
3
2
g
-]
]

0%
2 A‘,g:“\ﬂ_sx“ oS0 S AP N N I O P o S P P P o P P
P LT L L L P L L P L P L L L L L L o R LN L L]

g =

Date @ - Technology Origins ® - Percentgood INP Percent good CWV ('24) Percent good CWV ('23)
= A Jordy @JordyScholing - 22. Jan.

The percentage of origins passing the Core Web Vitals will drop from a low 30% to

dec 2023 Next s 128.000 31% 19.57% 31,5%
nov 2023 Next js 137.999 29.77% 1883% 304%

okt 2023 Next js 131.831 18,56 297" 20%.

9:25 AM - Jan 22, 2024 © n Q ihi 48 &

® 3 @ Reply L Share

Read 4 replies

https://twitter.com/J

https://twitter.com/JordyScholing/status/1749347465034141929
https://twitter.com/DanShappir/status/1525169096408670210

The NextJS team has awesome devs.
They know how to fix INP.

This Is not trivial.

Should my face now look like this &% ?

* No.
* That's why you‘re here, right? &

* Don’t underestimate the efforts and start “today”

* This includes convincing your boss!
* Grab a drink w/ your SEO team and start making “alliances”
* CEO’s usually listen to their SEO team more than to a dev saying “boss, INP is important”

« Remember: 200ms is your first target, currently there are no plans to lower this
threshold (however, at some point, Google may)

I'm sold, what do | do?

1) Find your culprits!
a) DIY: Use the Web Vitals chrome extension and click through your page
Enable logging + use the “Performance” tab for 6x CPU slowdown

b) Free INP/CrUX tools
Lab: & DebugBear INP debugging tool
Field: ® Calibre, RUMvision, Treo, WebPerformance Report, RequestMetrics

c) Convince your boss to invest in web perf tool(ing)
=> best data, as you get field data (esp. once Loar ands)

See above, or also SpeedCurve, Akamai mPulse, Catchpoint, SpeedVitals, Sentry;, ...

https://chromewebstore.google.com/detail/web-vitals/ahfhijdlegdabablpippeagghigmibma
https://www.debugbear.com/inp-debugger
https://calibreapp.com/tools/core-web-vitals-checker/
https://www.rumvision.com/tools/core-web-vitals-history/
https://treo.sh/sitespeed/
https://webperformancereport.com/
https://requestmetrics.com/
https://www.rumvision.com/blog/long-animation-frames/
https://www.speedcurve.com/
https://www.akamai.com/de/products/mpulse-real-user-monitoring
https://de.catchpoint.com/
https://speedvitals.com/

2) Fix it

Make INP green with this one simple trick:

Your PC ran into a problem and needs to restart. We're

just collecting some error info, and then we'll restart for
you.

20% complete

For more information about this issue and possible fixes, visit https://www.windows.com/stopcade

If you call a support person, give them this info:

Stop code: CRITICAL PROCESS DIED

Hah, bad news. There is no “magic fix”.

* But we get to see some magic fixes later

& React 17 vs. React 18

... finally coming to the part you’re probably here for?

React 1/

* Quick recap about how React event handlers worked for ages:
set state after async -> update synchronously

onClick={()=>{ fetchSomething().then(() => {

setState(a); // causes a re-render
setState(b); // causes a re-render

3) 3}

ou_n

=> user will never see “a”, so it was unnecessary

* We usually use throttling/debouncing + memo to avoid double work

React 18

/% Magic fix #1: Event handlers batched updates

onClick={()=>{ fetchSomething().then(() => {
setState(a);
setState(b);

3) 3}

=> 1x re-render with state “b”
=> Less re-rendering work on main thread => better INP

React 18

Enter “concurrent mode” E8

* We now have “urgent” and “non-urgent” updates
* via scheduler that gives control back to the browser every 5ms

Let startTime = performance.now(); // updated on every render

function shouldYieldToHost() {
return (performance.now() - startTime) > 5 /* ms */;

}

* Non-urgent is non-blocking => can be interrupted by urgent updates

I This is not the default. It is only in play when using transition utilities. !

React 18

Magic fix #2: “selective hydration” with <Suspense>
 New API: hydrateRoot()

 All children are marked as “non-urgent”
=> hydrated after all other “urgent” components

e User input (like click) makes <Suspense> trees urgent

* Expensive hydration = slow INP => fixed &

React 18

startTransition(() => hydrateRoot()): enable non-blocking hydration

4)
: dan’s alt @
@dan_abramov

yeah you'd need to wrap the parts that you want to unblock in Suspense. (we'll

likely add more targeted API for this later but not right now.)

to make even the very root non-blocking, i think you can wrap hydrateRoot call
into startTransition.

2:29 nachm. - 8. Sep. 2022

QO

Undocumented btw. A real 4 magic # tip!
NextJS does that already for you (and maybe others).

1 hydrateRoot();

2

M = urgent

<App> M = non-urgent
<Content> N <Menu>
<Suspense> <Dropdown>
& &
<H1> <P>
<App> <Content> <Menu> <Dropdown> <H1> <P>

https://3perf.com/talks/react-concurrency/

https://3perf.com/talks/react-concurrency/

React hydrates the Then React starts hydrating However, as soon as the user clicks
non-<Suspense> components inside <Suspense>, something inside <Suspense>, React
part of the app ~5ms at a time switches back to urgent hydration

— http:/ /localhost:8080/
Task 3
Function Call
R

Task

Event: pointerdown
Function Call

sd

td

Sc

Fl

xg

3

vi

J
tl
vi

https://3perf.com/talks/react-concurrency/

https://3perf.com/talks/react-concurrency/

Mation Product ~ Download = Solutions ~ Resources ~ Pricing

import { Suspense } from 'react’;

<Suspense> Oﬂ@ Wﬁi‘kﬁpaceu
<H1>0ne workspace. Every team.</H1> .
<P>We’'re more than a doc.</P> EUEIY team*

<Link href={...}>
Get Notion free
</Link>

<Suspe

</Suspense>

https://3perf.com/talks/react-concurrency/

https://3perf.com/talks/react-concurrency/

React 18

% Magic fix #1: Batched updates
Magic fix #2: Selective hydration

Result — Zalando: Result — Vercel:
-5.69% INP TBT: 80mMS ¢rom 0
-2.43% LCP INP: 48ms
-0.24% Bounce Rate

vercel.com/blog/improving-interaction-to-next-paint-with-react-18-and-suspense

engineering.zalando.com/posts/2023/07/rendering-engine-tales-road-to-concurre

https://engineering.zalando.com/posts/2023/07/rendering-engine-tales-road-to-concurrent-react.html
https://vercel.com/blog/improving-interaction-to-next-paint-with-react-18-and-suspense

Transition Utilities — React 18

useDeferredValue(): re-render w/ old value, schedule bg re-render
“if the user is typing into an input faster than an expensive component using its
deferred value can re-render, it will only re-render after the user stops typing.”

® Better debounce mechanisms — no artificial delay ¥

useTransition()/startTransition(): mark state updates as “non-blocking”
“if you update an expensive component inside a transition, but then start typing into
an input while it is in the middle of a re-render, React will restart the rendering work on
the expensive component after handling the input update.”

What is urgent?

* Anything that a user expects immediate feedback from is urgent

* An input is urgent R
* If you have a controlled component, updating the value is urgent
* A ‘word counter’ maybe not so much (a tiny bit of delay is fine)

* Click on a button/link/element

 “Avoid rage @ ” as a mental model

Optimistic Ul & Pending Ul

£ Optimistic UI:
Act like the action was successful, before e.g., a network request
finishes (run in parallel)

£ Immediate Feedback:
Show user something is happening by updating Ul right on the user
Interaction

& Pending Ul
Uncertain what’s happening next (e.g., checkout success or failure)?
Use a “busy indicator” (spinner, skeletons)

Immediate fwa//awg

creates better 41
Be 0/0&‘/}”/(%‘/&.

Qu |C k f|X An d |yt|CS “Debugging INP” @ https://youtu.be/nQByr5Yyclw?t=1625

Common slugs

‘%“ Long Input Delay Event Callback Presentation Delay
e o=
- i

Fainter

https://youtu.be/nQByr5Yyclw?t=1625

O OO0

1
2
3
4
5
6
7
8
9

window.yieldToMainThread = async () = {

if ('scheduler' in window && typeof window.scheduler == 'object' && window.scheduler == null) A{
if ('yield' jeWindow.schedule™s§ typeof window.scheduler.yield == 'function')
return @indow.scheduler.yield()

if ('postTask' in window.scheduler && typeof window.scheduler.postTask = 'function')

// We choose user-visible since user can interact with the page during the yielding interlude.
return window.scheduler.postTask(() = {}, { priority: 'user-visible' });

return new Promise(resolve = {{ setTimeout(resolve, 0) });

https://developer.chrome.com/blog/introducing-scheduler-yield-origin-trial

https://developer.chrome.com/blog/introducing-scheduler-yield-origin-trial#the_problem_with_current_yielding_strategies

Quick fix — Button/Link

O OO0

1 const CheckoutBtn = () = (

2 <Button

3 onClick={async(e) = {

4 try {

5 await doSomeAJAXStuff();
6

7

8

9

pushToDataLayer();
redirectToNextPage();
} catch (e) {
// aww, checkout failed
10
11
12

Change color, disable it, ...

O OO

1
2
3
4
i
(6}
7
8
9

10
11
12
13
14
15
16

const CheckoutBtn = () = (
<Button

onClick={async(e) = {

const promise = doSomeAJAXStuff().catch(/*handleErrorx/);|// W no await’

/7 @ update UL & yield (= allow browser to paint)
e.target.setAttribute('aria-disabled', 'true');
window.yieldToMainThread()J
try A

await promise;

pushToDataLayer();

redirectToNextPage();

catch (e) {

// aww, checkout failed
e.target.setAttribute('aria-disabled', 'false');

Disable immediately + trigger visual
update with CSS

e.g. [aria-disabled] { opacity: 0.7; pointer-events: none }

ﬁ Undo on error

’ @ Wes Bos
% @wesbos - Follow

Perf nerds - help us learn !
How would you find out why clicking a github emoji
reaction takes ~2.5 seconds from clicking it to it updating

on the page.

Network seems to take up ~350ms, but there is almost a
second before that request even fires.

Is there some sort of event...

1.85 2.0s 2.2s 2.4s 65) 8 s 2 A

342ms Load 2147483973: https://github.com/wesbos/wesbos[reactions

Status: Response received

1e: Missed
RL: https:/fgithub.com/wesbos/wesbos/reactions
ty: Normal(0)

M application/json

3,130B

Parent Process

‘github.com/we

6:59 PM - Jan 29, 2024

¥ 54 Reply 1, Share

Read 10 replies

https://twitter.com/wesbos/status/1752028584590319830

https://twitter.com/wesbos/status/1752028584590319830

Optimistic Ul: GitHub reactions

* Rage x 3000
* Long story short: They have a 1000ms debounce in place (oideawhy)

* Does anyone use Instagram here?

Clicking “Like” on any post runs the animation immediately
=> feels fast on any device & network #

® Update count & run network; update Ul again if needed

Fixing an expensive search

* Prefer transition utilities over debouncing

* Break up long tasks into smaller ones
¢ YiE|d yOur JS COde (like you yield work for coffee é)
e Abort running work & network if there is more recent work

mmochny/inp-workshop-
nextjs

o youtube.com
R

How to optimize web responsiveness with Interaction to Ne
i Dive into Interaction to Next Paint (INP), the newest
| performance metric in the Web Vitals program. Learn fro...

GitHub - mmocny/inp-workshop-nextjs: inp-codesandbox-nextjs

https://github.com/mmocny/inp-workshop-nextjs
https://www.youtube.com/watch?v=KZ1kxzsJZ5g
https://codesandbox.io/p/github/mmocny/inp-codesandbox-nextjs/csb-cswxqy/draft/mystifying-bell?file=%2Fsrc%2Fapp%2Fpage.tsx%3A37%2C10
https://codesandbox.io/p/github/mmocny/inp-codesandbox-nextjs/csb-cswxqy/draft/mystifying-bell?file=%2Fsrc%2Fapp%2Fpage.tsx%3A37%2C10
https://codesandbox.io/p/github/mmocny/inp-codesandbox-nextjs/csb-cswxqy/draft/mystifying-bell?file=%2Fsrc%2Fapp%2Fpage.tsx%3A37%2C10

If it doesn’t provide feedback,

it is a0l a/‘//&/(fto the user.
We run it after gelding.

Recap: How do | fix— Cheatsheet (1/2)

Use the “optimistic Ul” & “pending Ul” pattern:

* Always run network reqgs in parallel, never blocking to Ul updates (prefetch where applicable)
* Any interactive element -> change appearance (color, size, ...)

* Analytics always has lowest priority (= run after Ul update)

React: useAbortSignallingTransition() & transition utilities

Wrap less important components in <Suspense>
or better, eliminate need for hydration (lazy hydration / responsive hydration)

JS: yieldToMainThread()

Animations: Avoid causing reflow or animating expensive CSS props

https://github.com/hadeeb/react-lazy-hydration/
https://github.com/artsy/fresnel

Recap: How do | fix — Cheatsheet (2/2)

Use Field Data if available, else use DebugBear & similar for Lab Data w/ 6x CPU slowdown

Use the “optimistic fix” pattern:

* Fix now in a maybe not-so-clean way -> make INP green now
* Fix “clean” afterwards

* Favor fixes that improve UX

Handle edge-cases like error scenarios, network failures, long loading states
(> 1s), ... in optimistic Ul

[1 Contribute solutions to github.com/kurtextrem/awesome-performance-patches

[1 Mega thread: twitter.com/rick viscomi/status/1754536134690898053

https://github.com/kurtextrem/awesome-performance-patches
https://twitter.com/rick_viscomi/status/1754536134690898053

We’re not trying to speed up the

website by 500ms.

Dan Gayle // Crate & Barrel

https://www.youtube.com/watch?v=L6gZp3-7w8c

https://www.youtube.com/watch?v=L6gZp3-7w8c

Outlook

* React 18 Canary improves INP with the intro of RSC => avoids hydration of
static components; e.g., available in NextJS (Vercel's Blog)

* useOptimistic (react.dev) is perfect for the optimistic Ul pattern (demo)

* Remix has great docs for optimistic / pending Ul + soon has RSC support

* React Forget Compiler (react-forgetti / Million)

* Don‘t only defer your 3rd party, run it in WebWorkers (PartyTown &5),
server-side GTM / Cloudflare Zaraz

https://vercel.com/blog/how-react-18-improves-application-performance
https://react.dev/reference/react/useOptimistic
https://twitter.com/ryantotweets/status/1754177804323738016
https://remix.run/docs/en/main/discussion/pending-ui
https://github.com/lxsmnsyc/forgetti
https://million.dev/
https://partytown.builder.io/
https://www.cloudflare.com/de-de/application-services/products/zaraz/

Thank you. Questions?

Contact me on X: @kurtextrem, | (re)tweet perf stuff

	Folie 1: What React 18 does and how it impacts your INP
	Folie 2: Who am I?
	Folie 3: What’s Interaction-to-Next-Paint (INP)?
	Folie 4: What’s Interaction-to-Next-Paint (INP)?
	Folie 5
	Folie 6: Why should I care?
	Folie 7: Why must I care?
	Folie 8
	Folie 9: Why should my boss care?
	Folie 10: Why should my boss care?
	Folie 11
	Folie 12
	Folie 13
	Folie 15
	Folie 16
	Folie 18
	Folie 20: Should my face now look like this ?
	Folie 21: I’m sold, what do I do?
	Folie 22: 2) Fix it
	Folie 23: 2) Fix it
	Folie 24
	Folie 25: React 17 vs. React 18
	Folie 26: React 17
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 32
	Folie 34
	Folie 35
	Folie 36: React 18
	Folie 37: Transition Utilities – React 18
	Folie 38: What is urgent?
	Folie 40: Optimistic UI & Pending UI
	Folie 41: Immediate feedback creates better UX. Be optimistic.
	Folie 42: Quick fix: Analytics
	Folie 43
	Folie 45: Quick fix – Button/Link
	Folie 46: Change color, disable it, …
	Folie 47
	Folie 48: Optimistic UI: GitHub reactions
	Folie 49: Fixing an expensive search
	Folie 50: If it doesn’t provide feedback, it is not urgent to the user. We run it after yielding.
	Folie 52: Recap: How do I fix – Cheatsheet (1/2)
	Folie 53
	Folie 54
	Folie 55: Outlook
	Folie 57: Thank you. Questions?

