
Breaking Up with SVG-in-JS

Jacob Groß | 9th April 2025
written version & sources – kurtextrem.de/posts/svg-in-js

https://kurtextrem.de/posts/svg-in-js

Who am I?

• Senior Performance Engineer @ Framer (you might know us from “Framer Motion”)

• Participant in W3C WebPerfWG calls, if you have webperf topics, come chat ☺

• Studied Human-Computer-Interaction (UX) @ LMU Munich

I like making things fast & accessible for all users of the internet

What Jason meant we shouldn’t do:

What happens if you do:

Excursion:
It’s always those
damn barrel files.

P.S.:
In case you’re curious - Next.js/Turbopack includes
optimizations for some packages for that reason.

https://vercel.com/blog/how-we-optimized-package-imports-in-next-js

Tree-shaking: Impossible

F*ck

But maybe no

one has such a

slow device?

https://infrequently.org/2024/01/performance-inequality-gap-2024/

https://infrequently.org/2024/01/performance-inequality-gap-2024/

The web should be equal for everyone

• Mobile devices can be sloooooow

• iPhone 16 Pro != avg. users' device (unless you’re in a special field)

• Avg. Android device != avg. developing country device

• Galaxy A51 for 240€ from 2021 is the avg. device
Sounds recent?

https://infrequently.org/2024/01/performance-inequality-gap-2024/

https://infrequently.org/2024/01/performance-inequality-gap-2024/

How engines (V8) treat JS

How engines (V8) treat JS

How engines (V8) treat JS

Anything here impacts UX directly
Nothing else can run meanwhile.

Done in “background”

How engines (V8) treat JS

HTML parser finds JS

How engines (V8) treat JS

Anything here impacts UX directly
Nothing else can run meanwhile.

Done in “background”

How engines (V8) treat JS

For most frameworks, hydration
follows execution, too.

hydration

How engines (V8) treat JS

hydration

Time until something meaningful happens on
user interaction (think hamburger menu)

JavaScript is always blocking *when executed*

• attributes like async/defer don’t change that

• link rel=“modulepreload”/ServiceWorker caching only
moves when parse + compile happens (to right after download)

• Inlined JS always blocks the parser until parsing, compilation and
execution is done

• Inlined JS cannot be byte cached

• Be careful of what you inline, especially for JS

How engines (V8) treat JS

https://v8.dev/blog/code-caching-for-devs

• How truly parallel parsing & compilation is, depends on the number
of cores the devices CPU has and how many scripts are loading

• ESM: top-level imports execute synchronously – now we know why
importing from a barrel file is so slow

• More files = more overhead, especially for small ones
• HTTP headers can get bigger than the file content

• V8: disables byte cache if below the 1 kb threshold

How engines (V8) treat JS – Nits

https://github.com/whatwg/html/issues/4400
https://source.chromium.org/chromium/chromium/src/+/main:third_party/blink/renderer/bindings/core/v8/v8_code_cache.cc;drc=2f81d000fdb5331121cba7ff81dfaaec25b520a5;l=91

How engines (V8) treat JS – Byte Cache

“On Android, this optimization also translates to a 1–2% reduction in the top-
level page-load metrics like the time a webpage takes to become interactive.”

• A busy background (CPU) can also impact the main thread implicitly –
your website is likely not the only thing running

• Not only slow, but can cause bad INP if a user clicks somewhere
meanwhile

Your users are waiting for all those reasons.
Sometimes they might experience bad INP.
Sometimes it’s just nothing happens for a while.

How engines (V8) treat JS – Summary

“Byte-for-byte, JavaScript is more expensive for the browser to
process than the equivalently sized image or Web Font” – Tom Dale, web.dev

SVGs are HTML-like XML tags that describe images.

I don’t think anyone wants (jpeg/png) images in their JS.
… all of the strings also live in the JS memory heap – which is limited on cheap phones

So, what do we do about SVGs?

How engines (V8) treat JS – Summary

https://web.dev/articles/optimizing-content-efficiency-javascript-startup-optimization#parsecompile

Moving SVGs out of JS

Moving SVGs out of JS

Webpack: Astro:

No config needed!

Usage:

Don’t forget to turn on Gzip / Brotli compression for .svg files on your CDN/server.

1. Good ol’ tag

1. Good ol’ tag

Pro’s:

- You can use attributes
like loading="lazy" &
fetchpriority="high" if it‘s important

- Keeps DOM complexity simple - just 1 DOM node
- Most performant option of all

- SVG animations on DPR > 1x screens might
consume less CPU compared to an inline SVG

Con’s:

- Needs workaround for currentcolor and
custom props:
They don‘t inherit values from the current page
(the SVG file is treated as an external resource and not as part of the
DOM)

- Chromium: SVG animations run capped to 60
Hz and use more CPU on DPR = 1x screens

- <a> tags embedded in the SVG can’t be clicked

https://developer.mozilla.org/en-US/docs/Web/CSS/color_value#currentcolor_keyword

2. But how can I <use> more colors?

• Make it part of the DOM, by using <use>

• Must reference an ID, so the file might look like this:

Now you can just use currentcolor & CSS props again.

The return of the sprites

- SVG sprites are an option to combine many icons into one file

- This can make sense if you load 100 1kb files – the overhead of HTTP
headers then might be bigger than the svg itself

- ... but using just 1 icon out of a 100 kb file is less reasonable

The return of the sprites

- SVG sprites are an option to combine many icons into one file

- This can make sense if you load 100 1kb files – the overhead of HTTP
headers then might be bigger than the svg itself

- ... but using just 1 icon out of a 100 kb file is less reasonable

Usage is simple:

<use> con’s:

-<use> can only load from same-site – more on that soon

-<mask> & <clipPath> don’t work when the SVG is external

- Needs manual work … or tools like:

Icon-pipeline - ” SVG icon pipeline - Optimize icons & build SVG sprites”

JetBrains SVG sprite loader - “Webpack loader for creating SVG sprites.”

@svg-use - “a set of tools and bundler plugins, to ergonomically load SVG files as components, via SVG’s <use href> mechanism”

https://github.com/DavidWells/icon-pipeline
https://github.com/JetBrains/svg-sprite-loader
https://fotis.xyz/posts/introducing-svg-use/

Replacing JS with CSS

3. Inline in HTML

Pro’s:

• No extra HTTP request -> renders immediately
+ good for logos
+ good for search & hamburger icons

• Pretty much makes sense for anything important above-the-fold, where
you want the user to be able to interact right away

Con’s:

• More DOM nodes / DOM depth

• More to download, less to cache (unless you cache the entire page)

3. Inline in HTML

1. Like with critical CSS, inline carefully.
Critical CSS is recommended to stay below 14 kB.

2. Use data URIs () or if
you run into the caveats, inline the full <svg>

Inling != “put into the JS bundle again”

Inlining the server way
Next.js: Don’t add “use client”-> makes the SVG automatically
a React Server Component (= removed from JS bundle)

Inlining the server way
All other scenarios:

“SVG <use> elements don’t currently have any way to ask for cross-
origin permissions. They just don’t work cross-origin, at all.”
- O’Reilly Media book by Amelia Bellamy-Royds, Kurt Cagle, and Dudley Storey

In the case of CORS

SVGs are “old”, back then CORS wasn’t a thing.
But CSS knows how to treat CORS:

But: A mask, like , is also not part of the DOM, so caveats apply here as well.

https://oreillymedia.github.io/Using_SVG/extras/ch10-cors.html#:~:text=SVG%20%3Cuse%3E%20elements%20don%E2%80%99t%20currently%20have%20any%20way%20to%20ask%20for%20cross%2Dorigin%20permissions.%20They%20just%20don%E2%80%99t%20work%20cross%2Dorigin%2C%20at%20all.

Give it some love

• Although basically everyone knows and uses SVGs, browsers are slow
to implement new SVG features

• This leads to a limited feedback cycle between spec authors &
browser devs

• Check out how cool this would be: https://kizu.dev/svg-linked-
parameters-workaround/#the-spec

Any could then read --background

https://kizu.dev/svg-linked-parameters-workaround/#the-spec
https://kizu.dev/svg-linked-parameters-workaround/#the-spec

Measure, then optimize.
(or if you start, use one of the mentioned tools)

But no matter what you do,
NEVER put a PNG/JPG in the SVG:

https://www.linkedin.com/posts/mattzeunert_normally-svg-images-are-good-
for-web-performance-activity-7308843314412179456-BmcF/

https://www.linkedin.com/posts/mattzeunert_normally-svg-images-are-good-for-web-performance-activity-7308843314412179456-BmcF/
https://www.linkedin.com/posts/mattzeunert_normally-svg-images-are-good-for-web-performance-activity-7308843314412179456-BmcF/

Thank you. Questions?
Find me on

X: @kurtextrem | Bluesky: @kurtextrem.de | LinkedIn: in/kurtextrem

https://x.com/kurtextrem
https://bsky.app/profile/kurtextrem.de
https://www.linkedin.com/in/kurtextrem/

	Folie 1
	Folie 2
	Folie 3: Who am I?
	Folie 4: What Jason meant we shouldn’t do:
	Folie 5: What happens if you do:
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12: Tree-shaking: Impossible
	Folie 13
	Folie 14
	Folie 15
	Folie 16: The web should be equal for everyone
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21: How engines (V8) treat JS
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 33
	Folie 34
	Folie 35: 1. Good ol’ tag
	Folie 36: 2. But how can I <use> more colors?
	Folie 37: The return of the sprites
	Folie 38: The return of the sprites
	Folie 39: <use> con’s:
	Folie 41: Replacing JS with CSS
	Folie 43: 3. Inline in HTML
	Folie 44: 3. Inline in HTML
	Folie 45: Inlining the server way
	Folie 46: Inlining the server way
	Folie 47: In the case of CORS
	Folie 48: Give it some love
	Folie 49
	Folie 50
	Folie 51
	Folie 52: Thank you. Questions?

