
INP – Yield Patterns
to keep the UI smooth

Jacob Groß | 11th September 2024 | kurtextrem.de

https://kurtextrem.de/

Who am I?

• Senior Performance Engineer @ Framer (you might know us from “Framer Motion”)

• I work on Core Web Vitals & other performance related topics

• Participant in W3C WebPerfWG calls, if you have webperf topics, come chat with me

• I like making things fast & accessible for all users of the internet

What’s Interaction-to-Next-Paint (INP)?

Input delay: Main-thread activity blocking event handler processing

Processing time: Your (or 3rd-party) event handlers

Presentation delay: Browser rendering & maybe prev. unfinished user
interactions (keydown -> keyup)

It measures clicks, taps, key presses

https://nitropack.io/blog/post/optimize-interaction-to-next-paint-webinar

https://nitropack.io/blog/post/optimize-interaction-to-next-paint-webinar

What’s Interaction-to-Next-Paint (INP)?

https://web.dev/articles/optimize-input-delay

https://web.dev/articles/optimize-input-delay

What’s Interaction-to-Next-Paint (INP)?

• A browser tries to render new frames continuously (if needed)

• ‘fast’ is achieved by keeping the main thread free

Key here:

• INP is about giving the browser the opportunity to paint a frame – but doesn’t have
to for great INP*

• Keeping the main thread free makes the UI feel ‘smooth’(er) => improves UX

INP is how fast the browser could paint the next frame after user input
* A browser might skip “Paint” due to optimizations – those count for INP, too

https://web.dev/articles/inp

https://web.dev/articles/inp

If your summary now is:

“if you put less work on the main thread,
you improve UX & INP?”

Absolutely.

That’s why INP is a good approximation of felt UX.

Smooth webpages leave a great impression.

An INP eye-opener:
Doing nothing in response to user input allows the browser to paint fast => great INP…

…great INP in that case does not guarantee great UX!

Sometimes no feedback can be valid feedback.

Giving (no/any) feedback fast is what creates great UX.

What feedback fits your UI? Ask your UI/UX team.

To summarize INP:

Time between User Interaction to Next Paint (Opportunity)

Slower than 500ms -> Bad UX!

Slower than 200ms -> Could be better UX!

Faster than 200ms -> Good INP!

In reality, we‘re targeting 100ms:

• 100ms is the threshold where users are not able to perceive the delay
 we want this

• 200ms was picked because of the broad landscape of (mobile) devices
– reaching 100ms is hard, but it’s the WOW goal.

https://www.nngroup.com/articles/response-times-3-important-limits/ https://github.com/w3c/event-timing/issues/118#issuecomment-1108700093

https://www.speedcurve.com/blog/psychology-site-speed/ https://web.dev/articles/rail

Good UX?

https://www.nngroup.com/articles/response-times-3-important-limits/
https://github.com/w3c/event-timing/issues/118#issuecomment-1108700093
https://www.speedcurve.com/blog/psychology-site-speed/
https://web.dev/articles/rail

-

https://developers.google.com/search/docs/appearance/page-experience

<convincing arguments for your boss.slide>

https://developers.google.com/search/docs/appearance/page-experience

Case Studies

Here’s how AI ‘reimagined’ a
real graph I put into ChatGPT:

We shipped big INP improvements in…?

Graph matches the scale of the impact we‘ve seen. Thanks to friends from the RUMvision team, who helped w/ initial triage.

Customer reported 85% faster INP
> +100% search impression
> +100% search clicks

https://www.speedcurve.com/blog/core-web-vitals-inp-mobile/

https://www.speedcurve.com/blog/core-web-vitals-inp-mobile/

13% CVR @ 100 ms
vs.

3% CVR @ 250 ms

Ok Jacob. Sold.
What next?

a) Understand how to find your culprits
Guides: web.dev, DebugBear, RUMvision, Speedcurve, Speedkit, NitroPack, …

Field data: Calibre, RUMvision, Treo, WebPerformance Report, RequestMetrics, …

b) Apply fixes

1. Prioritize visible UI work and defer invisible tasks (such as analytics)

2. Yield to the main thread before, or frequently during expensive functions

3. Finish execution faster – improve runtime efficiency, abort previous tasks
and run less JS overall

Ship less JS: https://www.youtube.com/watch?v=f5felHJiACEkurtextrem.de/INP.pdf

https://web.dev/articles/inp
https://www.debugbear.com/docs/metrics/interaction-to-next-paint
https://www.rumvision.com/blog/experts-guide-to-mastering-interaction-to-next-paint/
https://www.speedcurve.com/blog/debugging-interaction-to-next-paint-inp/
https://www.speedkit.com/blog/enhancing-web-responsiveness-how-to-debug-and-avoid-slow-interactions
https://nitropack.io/blog/post/improve-interaction-to-next-paint-inp
https://calibreapp.com/tools/core-web-vitals-checker/
https://www.rumvision.com/tools/core-web-vitals-history/
https://treo.sh/sitespeed/
https://webperformancereport.com/
https://requestmetrics.com/
https://www.youtube.com/watch?v=f5felHJiACE
https://kurtextrem.de/INP.pdf

If it doesn’t provide feedback,

it is not urgent to the user.

We run it after yielding.

kurtextrem.de/INP.pdf

https://kurtextrem.de/INP.pdf

Yield Patterns to
keep the UI smooth

• Yielding is a way of saying ‘continue this later’

• Simplest way: setTimeout(fn)

Example:

<button onClick={() => {

 updateUI()

 setTimeout(sendAnalytics)

}}>

Yield Patterns to keep the UI smooth

setTimeout(() => alert(‘talk done’)

As simple as that.

prompt(“Questions?“)
The end. Follow me on X, @kurtextrem, I (re)tweet webperf stuff

Just kidding. setTimeout is
one way of yielding

(by the way, if you trigger an alert/prompt, it doesn't count as blocking for INP.
Do with that info whatever you feel like doing...)

https://www.debugbear.com/docs/metrics/interaction-to-next-paint#do-alert-and-similar-dialogs-contribute-to-inp

https://www.debugbear.com/docs/metrics/interaction-to-next-paint#do-alert-and-similar-dialogs-contribute-to-inp

…and a way of breaking up long tasks

https://web.dev/articles/optimize-input-delay

https://web.dev/articles/optimize-input-delay

Used since 2007.

https://x.com/jsmarr/status/1801000265811730807

https://x.com/jsmarr/status/1801000265811730807

Life of a (browser) frame

This is when setTimeout runs

Based on https://medium.com/@paul_irish/requestanimationframe-scheduling-for-nerds-9c57f7438ef4

Life of a (browser) frame

https://medium.com/@paul_irish/requestanimationframe-scheduling-for-nerds-9c57f7438ef4

It might run before a paint

https://github.com/w3c/long-animation-frames/issues/13#issuecomment-2142366987

Life of a (browser) frame

https://github.com/w3c/long-animation-frames/issues/13#issuecomment-2142366987

It might run after a paint

https://github.com/w3c/long-animation-frames/issues/13#issuecomment-2142366987

Life of a (browser) frame

https://github.com/w3c/long-animation-frames/issues/13#issuecomment-2142366987

How do we ensure it runs after paint?

• INP was about: making sure a browser has the opportunity to paint

• setTimeout alone does not guarantee it

npm package introduced by Vercel’s CTO Malte Ubl:

https://vercel.com/blog/demystifying-inp-new-tools-and-actionable-insights

How do we ensure it runs after paint?

npm package introduced by Vercel’s CTO Malte Ubl:

https://vercel.com/blog/demystifying-inp-new-tools-and-actionable-insights

Run after paint: await-interaction-response

It runs after paint

Run after paint: await-interaction-response

Pros:

• Guarantees better INP processing duration as it runs after paint

• Could be used to batch DOM writes (in the rAF) and DOM reads
(after the setTimeout) as runtime optimization

Cons:

• Might not run if a user is about to leave the page

• rAF could be throttled (if tab goes to background)

• setTimeout suffers from ‘queue jumping’ (= might run somewhen)

https://kurtextrem.de/posts/improve-inp

https://kurtextrem.de/posts/improve-inp

Queue Jumping?

Queue Jumping

• Almost anything running in the browser is a ‘task’ running in a queue

• Tasks can have different priorities

• setTimeout basically puts the callback to the end of the queue

• What if some 3rd-party dependency or analytics scripts you don’t
control have scheduled 100 setTimeout’s before?

• Your setTimeout will run last, so after 100 other tasks. Yikes.

Queue Jumping

“paint-done” might not be accurate

Run after paint: await-interaction-response

It runs after paint
(somewhen)

Jacob, are you telling me
nothing to fix this has been
released for over 17 years?

scheduler.yield

scheduler.yield

General Purpose: yieldToMain (scheduler.yield)

• Try scheduler.yield first – Chromium 129+ only

• Fallback to next modern API: scheduler.postTask – Chromium 94+

• setTimeout or at the end of the microtasks queue for high priority

• Yields to the main thread without awaiting paints

• Can improve INP, but does not guarantee

General Purpose: yieldToMain (scheduler.yield)

Pros:

• Great for slicing longer tasks into smaller ones as it doesn’t wait for paints
all the time

• ‘continuation’

Cons:

• we need to know how long / expensive our tasks are to make sure it
improves INP

• Limited browser support

• ‘continuation’ is slightly more confusing than ‘await paint & run code’

General Purpose: yieldToMain (scheduler.yield)

Calling hobby cooks, we now have 2
recipes. What do we do?

yieldToM
ain

await-interaction-response

yieldToMain in interactionResponse

This is how Framer runs interactionResponse on prod (btw don’t remove the setTimeout fallback)

This us?

Before we continue with more
browser scheduling stuff,

let’s take a look at a practical example.

Cookie Banners

“Accept” (or “Reject”) usually triggers lots of 3rd-party code

UI updates Stuff the user never sees Stuff the user never sees

Before yielding on “Accept”

After yielding: 100ms faster on p75!

Cookie Banners - Fix

• Yield (await paint) before running any CMP accept or reject callbacks

• Also give your CMP vendor a friendly reminder (because they also
might run events you cannot change)

• (Basically) a one liner to copy & paste

When to use yieldToMain vs.
await-interaction-response?

await-interaction-response

While waiting for paints, we do literally nothing.
Great for INP, inefficient for processing (e.g. data).

Images adopted from Barry Pollard

https://twitter.com/tunetheweb

yieldToMain

Keeps the UI responsive & is fast for processing,
but might fail to improve INP if we don’t know the workload.
If we’re not careful, we might do much before yielding back to the main thread.

“I’d advocate for splitting the tasks liberally using
something like yieldToMain at good yield points
and then letting the browser worry about what to
schedule when. In most cases that should strike a
good balance between optimizing INP and also
getting the work done, without having to think too
much about it.”

- Barry Pollard, Google WebPerf Dev Advocate

yieldToM
ain

await-interaction-response

(again?)

• Important takeaway: Both alone have their pros and cons…

• But in combination, we can achieve great things:

a) Defer non-critical UI updates until the next paint via interactionResponse

b) Split long tasks into smaller ones via yieldToMain

Goal: Keep tasks below 50ms.

The trade-off to make is either faster results or a more responsive UI (+
possibly better INP).

yieldToMain + interactionResponse

yieldToMain + interactionResponse

A DIY scheduler

One more pattern:
yieldUnlessUrgent

Introduced by Google Engineer Philip Walton

https://philipwalton.com/

Exit Event Handlers: yieldUnlessUrgent

• With just yielding, there is a chance the browser unloads the page
before executing the callback after the yield point

• Guarantees a callback runs before a user leaves the page

• Useful for business-critical analytics, or saving forms

• Can be paired with both yieldToMain & interactionResponse

Only 5 slides to go

Google Tag Manager (GTM)

Analytics

• Usually causes tons of INP issues
• dataLayer.push / gtag() is more like “push INP up”

• “What if we remove GTM” -> realistically this will never happen

Experimental – auto yield GTM/GA

Analytics

Experimental – auto yield GTM/GA

I’ve shipped it to prod just-like-that , results:

P99 – 50ms

P75 – 15ms

Make sure to read the ‘Cons’: https://kurtextrem.de/posts/improve-inp#event-handlers--google-analytics--google-tag-manager-

https://kurtextrem.de/posts/improve-inp#event-handlers--google-analytics--google-tag-manager-

Analytics

Experimental – auto yield GTM/GA

Tips:

• Run it at the (window) `load` event, so that your push function
overrides the GTM function

• Pair it with the yieldUnlessUrgent pattern (rAF + setTimeout) so
you‘re not the one to blame for less visitors ;)

https://www.youtube.com/watch?v=L6gZp3-7w8c

https://www.youtube.com/watch?v=L6gZp3-7w8c

Thank you. Questions?
Contact me on X: @kurtextrem, I (re)tweet webperf stuff

 React folks: Check out my previous talk specifically about React & INP, it has a few
more practical examples & useful tips - kurtextrem.de/INP.pdf

https://x.com/kurtextrem
kurtextrem.de/INP.pdf

	Standardabschnitt
	Folie 1: INP – Yield Patterns to keep the UI smooth
	Folie 2: Who am I?
	Folie 3: What’s Interaction-to-Next-Paint (INP)?
	Folie 4: What’s Interaction-to-Next-Paint (INP)?
	Folie 8: What’s Interaction-to-Next-Paint (INP)?
	Folie 9
	Folie 10
	Folie 11: To summarize INP:
	Folie 12: -
	Folie 13: Case Studies

	Abschnitt ohne Titel
	Folie 14
	Folie 15
	Folie 16: We shipped big INP improvements in…?
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21: If it doesn’t provide feedback, it is not urgent to the user. We run it after yielding.
	Folie 22
	Folie 23: Yield Patterns to keep the UI smooth
	Folie 24
	Folie 25: prompt(“Questions?“)
	Folie 26
	Folie 27: …and a way of breaking up long tasks
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33: How do we ensure it runs after paint?
	Folie 34: How do we ensure it runs after paint?
	Folie 35: Run after paint: await-interaction-response
	Folie 36: Run after paint: await-interaction-response
	Folie 37
	Folie 38: Queue Jumping
	Folie 39: Queue Jumping
	Folie 40: Run after paint: await-interaction-response
	Folie 41
	Folie 42
	Folie 43
	Folie 44: General Purpose: yieldToMain (scheduler.yield)
	Folie 45
	Folie 46: General Purpose: yieldToMain (scheduler.yield)
	Folie 47
	Folie 48
	Folie 49: yieldToMain in interactionResponse
	Folie 50
	Folie 51
	Folie 52: Cookie Banners
	Folie 53: Before yielding on “Accept”
	Folie 54: After yielding: 100ms faster on p75!
	Folie 55
	Folie 56: Cookie Banners - Fix
	Folie 57
	Folie 58: await-interaction-response
	Folie 59: yieldToMain
	Folie 60
	Folie 61
	Folie 62
	Folie 63
	Folie 64
	Folie 65
	Folie 66
	Folie 67
	Folie 68: Exit Event Handlers: yieldUnlessUrgent
	Folie 69
	Folie 70
	Folie 71: Analytics
	Folie 72: Analytics
	Folie 73: Analytics
	Folie 74
	Folie 75: Thank you. Questions?

