
Rolldown: Chunking in the wild
Jacob Groß — @kurtextrem — 9th October 2025

https://kurtextrem.de

https://kurtextrem.de

Who am I?

💻 Senior Performance Engineer @ Framer

⚡ I work on Core Web Vitals & performance related topics

🌐 Participant in the W3C WebPerf Working Group — come chat w/ me about perf topics :)

 is a website builder and design tool, where you can design any
website for any scale, setup complex animations, user interactions,
… and have it published in seconds.

What are “chunks”?

Source: Google / web.dev

https://web.dev/articles/granular-chunking-nextjs

How many chunks are optimal?

Source: Google / web.dev

https://web.dev/articles/granular-chunking-nextjs

How many chunks are optimal?

Source: Google / web.dev

Initial chunks

https://web.dev/articles/granular-chunking-nextjs

20-25
“Initial chunks struck the right balance between

loading performance and caching efficiency”

Source: Google / web.dev

https://web.dev/articles/granular-chunking-nextjs

This talk isn’t meant to bash on esbuild.

esbuild served us great. We were (one of?) the first users of esbuild in production.
It’s stable & incredibly fast — Evan Wallace started the race of fast bundlers.

But: It lacks some options — a void for other bundlers to fill.

Too many small chunks

Not so strict import order

Stale PRs

 Alipay internally forked esbuild

Fork it?
Unbundle everything?

Why bundle in 2025

Why bundle?

HTTP/2+ does not solve the need for bundling.

Effects of splitting one file into multiple ones:

Network overhead: ↑ roundtrips, ↓ compression, HTTP header overhead

Source: Yoav WeissSource: Harry Roberts

https://simonhearne.com/2020/network-faster-than-cache/#the-obvious-bottleneck
https://blog.yoav.ws/posts/on_resource_bundling_and_compression_dictionaries/#why-bundle?
https://simonhearne.com/2020/network-faster-than-cache/#the-obvious-bottleneck
https://twitter.com/csswizardry/status/1352402710688133122?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1352402710688133122%7Ctwgr%5E7ea5aaac085c58fb726b2f07eef7721fdfd1aa6a%7Ctwcon%5Es1_c10&ref_url=https://csswizardry.com/2023/07/in-defence-of-domcontentloaded/

Renderer & IPC cost

Modules have a cost in both Blink, V8 and the communication between.

Source: Chromium

“Loading time increases proportionally to the # of requests, not by the total size of
responses, regardless of whether they come from cache or not. For example:

Loading 10_000 1kB files is 10x slower than a single 10MB load.”

https://simonhearne.com/2020/network-faster-than-cache/#the-obvious-bottleneck
https://docs.google.com/document/d/1ds9EEkcDGnt-iR8SAN-_7nsOfw7gsMfhZjzZ_QAIyjM/edit?tab=t.0#heading=h.f8zg8i57s7ky

Renderer & IPC cost

Chrome OS average cache retrieval doubles from ±50ms with 5 cached
resources up to ±100ms with 25 resources.

Source: Simon Hearne

Cached resource count

https://simonhearne.com/2020/network-faster-than-cache/#the-obvious-bottleneck

Think about all users
Source: Alex Russell

https://infrequently.org/2024/01/performance-inequality-gap-2024/
https://www.manning.com/books/http2-in-action

Concurrency limits
HTTP/2+ servers only accept N concurrent streams. After, they kinda behave like HTTP/1.

Source: Barry Pollard / “HTTP/2 in action”

https://www.manning.com/books/http2-in-action

HTTP/2+ does not solve the need for bundling.

Splitting one file into multiple ones creates more overhead:

1. Network overhead: ↑ roundtrips, ↓ compression, HTTP header overhead

2. Renderer & IPC cost: More isn’t free.

3. Concurrency limits of HTTP/2+ servers & browsers

You should bundle.

This leads to worse UX & Core Web Vitals — especially on slower devices & networks.

Ambitious bundler goals

Our 3 must-have requirements:

1. Granular control over chunks — to counter too-small-modules.

2. Strict module execution order — to isolate user code in our case.

3. Equally or faster than esbuild — regressing perf isn’t an option.

A bundler journey

There are other good bundlers out there:

 Parcel: Surprisingly fast and capable. Slower than esbuild.

 Rspack: Similar API to Webpack. In my tests in 2024, slower than Parcel.

 Farm-Fe: Unique chunking algo. Slower than Rspack.

 Turbopack: Tied to Next.js.

😨

Back in May 2024, we knew Rolldown was coming, but it was early.

We’ve seen how fast Oxc is. We heard Rolldown is fast.

Rolldown at
from research to product

After talking in August 2024, we figured a cooperation would shape
Framer’s future of bundling and I could help shape Rolldown’s API.

X

What happened in 1 year?
• Designing & implementing the chunking API

• Minification support

• Fix rare minification errors

• Handle legal comments during minification

• Fix crashes

• Hashing woes

• Top-level await support

• CJS in ESM

• Nasty chunking algorithm things (Yunfei can tell you a story)

• Performance & memory improvements (bundle 300 MB JS?)

• Test Rolldown for Framer sites with 1 route and with 10_000s of routes

Esbuild vs Rolldown
(from my POV)

✅ Similar API (with unique Rolldown additions)

✅ JS plugin support (we use it to create virtual modules)

✅ JS minification

❌ No CSS minification yet!

Minifier performance

Esbuild vs Rolldown

Memory usage when bundling 300 MB JS w/ 500 MB
sourcemaps:

 Rolldown: >10 GB
 esbuild: 9.2 GB

Improvements are coming! (And I hope no one else has 300 MB of JS somewhere)

Bundling at Framer
• Customers can write custom JS code, most commonly React

components → our biggest sites have ±300 MB of JS (across all pages)

• We use SSG for faster page loads & crawl-ability (no SSR → no LLM!) 🤖

• Rolldown bundles both client and server code
→ 🪶 Deps needed for SSR shouldn’t end up in the client bundle

 → 🔒 Strict execution order matters — our runtime code shouldn’t fail
if there is an error in user code

Bundling at Framer

🚪 Every route has its own entry-point
→ Lazy loaded in the browser (& preloaded using heuristics)

📦 Every route might have its own dependencies
→ They shouldn’t be loaded on every other route

Non trivial: How do you split the code optimally?

Good rules for bundling

Google research to the rescue:

A. Used by some chunks and below 20 kb
→ “common” chunks

B. Used on all pages
→ “shared” chunks

C. Big library > 160kb
→ “library” chunks

Source: Google / web.dev

https://web.dev/articles/granular-chunking-nextjs

groups: [

 {

 name: "react",

 // include react/react-dom/scheduler, but not the server chunk

 test: /[\\/]npm:(react|react-dom|scheduler)@(?![\d.]+\/server\.browser\.js)/,

 priority: 1000,

 },

 { name: "motion", test: /^(motion|framer-motion)/, },

 { name: "framer", test: /^framer/, },

 {

 name: "shared-lib",

 minShareCount: routesLength,

 },

 routesLength >= 40 ? {

 name: "shared",

 minShareCount: Math.floor(routesLength / 2),

 } : undefined,

].filter(group => group !== undefined),

Start simple

More likely to hit

20-25 chunks

Used by all routes

Update independently

Advanced Options in Rolldown

Goal: Simple, yet powerful options similar to webpack.

A. minSize → don’t create the group unless > N bytes

B. maxSize → split the group when > N bytes

C. minShareCount
→ create only if N entrypoints reference it

D. min/maxModuleSize
→ min or max size of modules that are bundled into the group

How Framer loads JS

<body>

 <div id="main"><!-- react root --></div>

 ...

 <link rel="modulepreload" href="chunk1.mjs">

 <link rel="modulepreload" href="chunk2.mjs">

 <script type="module" src="main.mjs" async></script>

</body>

Using HTTP/3
from our CDN

Browser preload scanner starts downloading the chunks before executing “main”

Analyze your chunks

Analyzing bundles

• Spoiler: Bundle analysis will be part of Vite Devtools, stay tuned for Anthony’s talk

• For pure Rolldown users, currently there are two plugins:

• Sonda

• Rollup-plugin-visualizer

• is a viable option too

https://sonda.dev/
https://github.com/btd/rollup-plugin-visualizer

Rolldown x Framer

Rolldown x Framer

Rolldown x Framer

Rolldown x Framer

Analyzing bundles

Follow discussions about emitting an esbuild-like metafile in #6425.

Once we have that, you can use:

• hawkeye, bundle-buddy, esbuild-analyzer, Bundle Size Analyzer

• @rnx-kit/esbuild-bundle-analyzer
…which unlocks support for microsoft/webpack-bundle-compare & Rsdoctor

https://github.com/rolldown/rolldown/issues/6425
https://angularexperts.io/blog/hawkeye-esbuild-analyzer
https://bundle-buddy.com/esbuild
https://www.npmjs.com/package/@viz-kit/esbuild-analyzer
https://esbuild.github.io/analyze/
https://www.npmjs.com/package/@rnx-kit/esbuild-bundle-analyzer
https://github.com/microsoft/webpack-bundle-compare
https://rsdoctor.rs/

experimental: {

 attachDebugInfo: "full",

},

Rolldown x Framer

//! Common Chunk: [Shared-By: entrypoint1.js, somemodule1.js,

//! somemodule2.js, somemodule3.js, somemodule4.js]

Entrypoint Also referenced by

To get rid of this chunk → make sure it’s not imported by those modules

Results

p25 20 → 14

p75 67 → 22

p90 80 → 30

p99 95 → 54

Improvements to chunks

36%
Median drop in download size in both un- and compressed JS

4%
Avg. improvement to LCP¹ for websites with 1–2MB of JS

¹ LCP adjusted to TTFB

41%
Avg. improvement to LCP¹ for websites with 2MB+ of JS.

¹ LCP adjusted to TTFB

11%
Faster LCP¹ at p90 across all Framer sites.
❤ for slow devices & slow networks

¹ LCP adjusted to TTFB

A fast, stable and capable bundler is a win-win for everyone.
For us, our customers & their visitors, the Vite community, the web.

Thank you!
Questions?

@kurtextrem on X, LinkedIn, BlueSky
https://kurtextrem.de

https://x.com/kurtextrem
https://www.linkedin.com/in/kurtextrem/
https://bsky.app/profile/kurtextrem.de
https://kurtextrem.de

